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ABSTRACT 

In this study we construct an artificial neural network model of 

players’ relaxation preferences while playing a physical Wii 

game.  Developed technology will assist game designers to 

automate a part of the game design and balancing features, and 

create physical Wii games with adaptive experiences for the 

player. The model is trained on data derived from the player-Wii 

interaction which include physiological response, Wii Remote 

gesture and game data. In this study the developed relaxation 

model proved to achieve a highest classification accuracy of 

78.42%. Furthermore, the restriction of input data to Wii Remote 

specific features and the possibility of using this model for 

tailoring the player experience are discussed.  

Categories and Subject Descriptors 

I.2.1 [Artificial Intelligence]: Applications and Expert Systems – 

Games. 

H.1.2 [Models and Principles]: User/Machine Systems – Human 

factors, Human information processing. 

K.8 [Personal Computing]: General – Game.  

General Terms 

Algorithms, Measurement, Performance, Design, Human Factors, 

Experimentation. 

Keywords 

Affective Computing, Physical Interactive Games, Physiology, 

Tailoring Player Experience, Emotion, Machine Learning 

1. INTRODUCTION 
The game industry practice for making games is a team of game 

designers, artists and level designers, amongst others, that realise 

their ideas into a game and often expect that the player experience 

is as imagined. However, there exist different player types [1] 

with dissimilar playing styles that might experience the game 

differently. To overcome this, applying affective computing [2] 

techniques to video games make it possible to develop 

computational models that recognise the players’ emotional state 

and can be used to tailor the player experience as intended by the 

game designers. 

The goal of this study is to develop a relaxation model that, based 

on the model’s outcome, can adjust in-game control parameters to 

generate a selected relaxation state. Such technology can for 

instance assist the development of adaptive physical games suited 

for physical therapy and rehabilitation. 

2. RELATED WORK 
In recent years the interest in emotions recognition research has 

grown rapidly and has advanced into numerous studies of emotion 

measurement [3]. Emotions are complex processes and arouse 

numerous changes and responses among the behavioural, 

physiological and subjective systems of the body; therefore it is 

difficult to measure them precisely. Researchers (Lang [4], 

Schachter [5], and Scherer [6]) argue that facial and vocal 

expression, and physiological changes – like for example: 

increasing heart rate (HR) and sweaty hands (increasing skin 

conductance1 (SC)) co-occur with emotions, and measuring such 

user response can help in indentifying emotions accurately. The 

patterns in emotion response and expression can be “person-

dependent” and vary in many ways. This can be due to many 

factors, such as temperament, personality, gender, context, and 

social and cultural expectations [2]. These issues can be resolved 

by building an emotion recognition system that is based on 

machine learning and pattern recognition, which can determine 

which features are the best emotion predictors for each individual. 

Yannakakis, et al. [7] developed an artificial neural network 

(ANN) model that can capture players’ level of reported fun while 

playing physical activity games built on physiology signal input 

and fun preferences. Another example is the study of McQuiggan, 

et al. [8] that investigates which of the following three machine 

learning techniques: induced decision trees, naïve Bayes or 

Bayesian Network, is the most accurate in mapping the player’s 

physiology data to emotions. There are many other similar 

affective modelling studies in the literature but discussing them is 

out of the scope of this paper. 

This experiment follows the experimental methodology proposed 

by Yannakakis, et al. in [7] and constructs a model for predicting 

Wii players’ reported relaxation preference. The novelty of this 

study lies in the application of an existing methodology to a new 

domain, specifically to a physical Wii game. 

3. METHOD 
For building the proposed affective computational model, the 

following four steps are taken: 

                                                                    

1 The skin conductance response is the electrical resistance of the skin i. e. 

sweat in hands. 



1. To tailor the player experience some game variables – factors 

that influence the player experience – need to be mapped to the 

players’ relaxation state. The psychological study by Malone [9] 

identifies three factors that influence the players’ engagement and 

experience in games: challenge (how hard/challenging the goals in 

the game are), curiosity (how predictable the game states are) and 

fantasy (mental images of physical objects and social situations).  

Challenge and curiosity are chosen to be the variables (i.e. 

controllable game factors) used to generate different variations 

and experiences from one game. The challenge and curiosity 

factors are quantified and three different states (low, medium and 

high) are designed for each factor. All combinations of these 

controllable parameters are used to generate nine variants of the 

game i.e one game can be generated from the combination “low 

curiosity” and “high challenge”.  

2. A user study is designed that uses a Wii test-bed game, 

questionnaire and sensors to gather the following data from the 

player: a) Blood Volume Pulse2 (BVP) and SC signals, b) motion 

acceleration data from the Wii Remote, c) interaction data from 

the game, and d) user reported pair-wise relaxation preference 

data from different variants of the game.  

3. A machine learning algorithm is used to learn the association 

between the following factors: physiology signals data (SC, BVP, 

and HR), players’ selected relaxation preference and the game 

interaction and gestures data.  

4. The last step is to use the trained relaxation model to tailor the 

players’ experience in real-time.  For this purpose, the specific 

controllable game features – challenge and curiosity – would be 

used to change the players’ relaxation. The intention of this model 

is to predict how the relaxation state changes relating to 

controllable game factors and physiology and Wii features, and 

thereby making it possible to guide the players’ experience 

towards a specific relaxation state. 

3.1 The Wiizards Test Game 
In order to construct the computational model a test-bed Wii game 

Wiizards was developed. Wiizards is a single player magic 

fighting game in which the player embodies a role of a wizard and 

fights against an enemy wizard. The Wii Remote in the game 

represents a magic wand that the player uses to “perform magic” 

with by doing certain gestures. The players can chose from 3 

spells: Lightning, Fireball, or Shield spell. When a player is under 

a lightning attack, she can break out by shaking the Wii Remote 

heavily.  

The player is fighting an enemy wizard that is computer-

controlled and can be adjusted according to the controllable 

features in the game i.e. the curiosity (cu) and challenge (ch).  The 

purpose of the game is to win all fights against the opponent, 

which defines the game goal of any fighting games. The 

controllable feature challenge is defined to be the magic 

performing speed of the computer-controlled opponent and 

curiosity is defined as the choice and the order of magic spells that 

the opponent selects. 

                                                                    

2 Blood volume pulse is the blood pressure in the extremities; heart rate 

can be calculated from this signal.  

 

Figure 1. A screenshot of the test-bed game during gameplay 

where the player is under lightning attack from the opponent 

4. USER STUDY 
In order to collect the data needed for training the relaxation 

model a user study was conducted at a primary school using 

pupils at the age group 13-16. To keep the experimental effect as 

low as possible the participants played the game alone in a 

customised room. The users’ reported relaxation preference was 

gathered via a questionnaire that asked them to compare the two 

games they just played. The questionnaire was presented in a 

digital form and integrated in the game to rule out any experiment 

bias introduced by an interviewer [10]. Since the participants had 

to play more than one game, their physiology signal had to be at 

baseline level each time they started playing.  Therefore, they 

were instructed by the game to sit down and relax for one minute 

before playing the next game [11]. The experiment was performed 

on 33 participants that played two game pairs each, which gave a 

total of 66 relaxation preferences. 

The experiment was performed by using the following procedure: 

Each of the participants played two game pairs; i.e. four games in 

total. Prior to the start of the experiment, subjects got a thorough 

introduction of how to play the game. The time window for each 

game played was set to 90 seconds. The participants were asked to 

first play Game A, then Game B and afterwards they were 

instructed by the game to compare the relaxation felt in the games 

by answering a questionnaire. The questionnaire uses the 4-

alternative forced choice format (1. A > B, 2. B > A, 3. A = B, 4. 

⌐A ⌐ B as suggested in [7]). Only preferences from alternative 1) 

and 2) were considered valid and were used as training data for 

the model. The answers from 3) and 4) were given as a alternative 

choice to provide more expressive freedom for the participants 

and to eliminate potential biased answers, where a player were 

forced to have a preference where she has none. 

The physiology signal data was gathered from BVP and SC 

sensors which were attached on the participants’ fingertips of the 

hand that was not moving during gameplay. The rest of the data 

needed for training the relaxation model were gathered by log 

files that recorded the data during gameplay. 

5. DATA FEATURE EXTRACTION 
In total, 62 statistical features were extracted for the physiology 

signals, the player-game interaction data, and the Wii Remote 

acceleration data.  For the sake of brevity only a small selection of 

the physiology features are presented in this paper.  

The HR signal can be derived from the BVP signal via 

extrapolation of the inter-beat time intervals. The HR features 



extracted are: the average HR, ��ℎ�, the standard deviation of 

HR, ��ℎ�, the maximum HR, 	
��ℎ�, the minimum HR, 	�
�ℎ�, 

the difference between maximum and minimum HR, �� =
 	
��ℎ� − 	�
 �ℎ�, and the approximate entropy ���
 of the 

signal which quantifies the predictability of fluctuations in the HR 

time series [7]. The above-mentioned features were extracted 

from the SC signal as well. Features extracted from the Wii 

remote motion data include: The average acceleration in x-axis, 

��
��, y-axis, ��
��, and z-axis, ��
��, and the average absolute 

aggregated acceleration in all three axes, ��|
�| + | 
� | + |
�|�. 

Finally, the following features were extracted from the interaction 

between the player and the game: player’s reaction time from 

opponent’s lightning hit, until the player begins to “shake out” to 

break the spell: ���� !"#$ and the number of gestures performed in 

the game: 
%&'�()&'. 

6. RELAXATION MODEL LEARNING 
To construct a relaxation model that predicts the subject’s 

reported relaxation preference a preference learning algorithm is 

used. The assumption is that the player’s relaxation value *, 

which is a response to the game variant, is an unknown function 

of player specific features can be learned by a machine learning 

algorithm. Given that both physiology signal data can be noisy 

and the level of player self reported preference is person-

dependent; we believe that ANNs can generate a high-performing 

and generalising function. A feedforward multilayered ANN for 

learning the relation between the selected features (ANN inputs) 

and the relaxation value * (ANN output) is utilised in this paper. 

Since the output value * is not explicitly defined, normal ANN 

training algorithms like back-propagation are not applicable. 

Instead, learning is achieved through artificial evolution. 

Neuro-evolutionary preference learning [7], is utilised to construct 

the computational model of reported relaxation preference. The 

algorithm uses an evaluation function that measures the difference 

between the subjects’ reported relaxation preferences and the 

model’s output value *. Each member in the population is an 

ANN with fixed topology (2 hidden layers with 5 neurons each) 

and the chromosome is a vector of ANN connection weights. The 

population was initialised with 100 members with random weights 

[0; 1]. The population reproduces offspring with a crossover rate 

of 0.75 and mutation rate of 0.25. Elite selection is used as the 

selection method. 

6.1 Feature Selection 
In this experiment the Sequential Forward Selection (SFS) 

method was used to automatically select the best feature subset to 

be used by the ANN model as its input vector. The SFS algorithm 

is a bottom up search where one feature is added at a time to the 

current feature subset. The current subset together with each of 

the remaining features is evaluated with the relaxation model and 

the best feature is selected and added to the current subset. This is 

repeated until the added feature yields lower or equal validation 

performance. In order to evaluate the performance of each feature 

subset, the performance of the model is evaluated using threefold 

cross-validation, where the available data is randomly divided into 

three equal parts. Two of which is used for training and the third 

is used for validation. The parts are then rearranged and the model 

is validated again until every part has been used for training and 

validation. 

7. RESULTS 
As mentioned before, for the purpose of selecting features, the 

SFS method is utilised as it is relatively successful in selecting 

good features. The two controllable game features were enforced 

to always be a part of the selected feature subset. This was done in 

order to have a model that can predict the player’s relaxation level 

based on the controllable game features, since these are the 

features that can be changed to alter the player’s relaxation level. 

It has been proposed to stop when the added feature yields lower 

or equal validation performance to ensure minimal subset [12]. In 

this paper, the algorithm was terminated when an added feature 

yielded a performance decreased by more than 5% to avoid local 

minima. The performance of the model is evaluated using 

threefold cross-validation. 

Table 1. Validation performance +(%) of each iteration of the 
SFS selection method 

SFS 

Feature subset {F} /(%) 

�0(, 0ℎ, ���� !"#$� 75.99 

�0(, 0ℎ, ���� !"#$, ��
�� � 71.15 

�0(, 0ℎ, ���� !"#$, ��
��, 	�
�'0� � 78.42 

�0(, 0ℎ, ���� !"#$, ��
��, 	�
�'0� , �� � 73.07 

 

As seen in Table 1, �0(, 0ℎ, ���� !"#$, ��
��, 	�
�'0� � yields a 

cross-validation performance of 78.42 %. It is interesting to note 

that the highest performing feature subset selected consists of both 

SC features and Wii Remote features. When BVP features are 

added the feature performance falls enough for the selection 

method to stop. This correlates well with literature that states that 

SC is a good indication of arousal. The player’s reaction time in 

the game is also a good indicator for relaxation. Possibly a relaxed 

player has slower reactions than an alert player. 

7.1 Wii Remote Features 
Because of the wide availability of the Wii Remote, we found it 

interesting to investigate whether a subset consisting solely of Wii 

features could give high classification accuracy. As it can be seen 

in Table 2Error! Reference source not found. the model with 

only Wii Remote features performs closely to the model with 

access to a full subset of features.  

Table 2. Validation performance of the SFS method with 

subsets restricted exclusively to Wii Remote specific features 

SFS 

Feature subset {F} /(%) 

�0(, 0ℎ, ���� !"#$� 75.99 

� 0(, 0ℎ, ���� !"#$, 	�
�
�� � 65.86 

 

7.2 Tailoring Player Experience 
With a trained relaxation model that includes controllable game 

features, it is possible to calculate the network gradient to 

determine how these features should be adjusted to change the 

relaxation experienced by the player. A visualisation of this can 

be seen in Figure 2, where a random subject’s (subject 23) input 

data is used in the relaxation model. In this test game the subject 



was playing with the controllable features at, challenge: 0.3 and 

curiosity: 0.3, which is depicted in the figure with a black square. 

In order to increase the relaxation experienced, the gradient would 

reveal that the game should increase both challenge and curiosity.  

 

Figure 2. Graph showing the level of relaxation experienced in 

the game from a fixed subset of features, given the two 

controllable game features: challenge and curiosity.  

The squares depict the test subject’s placement  

(challenge = 0.3, curiosity = 0.3) 

8. CONCLUSION 
This study uses an established methodology for predicting 

players’ relaxation and applies it to a physical Wii game. The 

methodology was originally applied to playware games [7] and 

has in other studies been applied to dissimilar games [12] [13] and 

is in this study applied to a physical Wii game, proving the 

methodology’s scalability. The relaxation model created in this 

study uses very domain specific game features such as  ���� !"#$, 

making the scalability of the model uncertain. The model could 

possibly be applied in other domains; however, more testing 

would be needed to verify this. The automated relaxation 

recogniser achieved a classification accuracy of 78.42% and 

showed that it could be used to tailor the player experience by 

calculating the gradients of the curiosity and challenge parameters 

to ultimately make game design decisions based on these. 

Furthermore, it was shown that restricting the feature subset to 

Wii Remote features, the highest classification accuracy achieved 

was 75.99%. This result is interesting for the game industry as 

well as in academia as it can be utilised with no need for invasive 

physiology sensors. However, as physiology sensors are 

beginning to become more commercial in games e.g. Nintendo’s 

Wii Vitality [14], it is not unimportant to regard physiology 

features as well, since they can achieve higher classification 

accuracy.  
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